

## Pressure Rise and Electron Cloud

### S.Y. Zhang, RHIC Beam Experiments Workshop, October 15 - 16, 2003

## I. Electron cloud induced pressure rise

- 1. Injection pressure rise associated with electron cloud
- 2. Bunch gap effect
- 3. Beam scrubbing
- 4. Solenoid effect
- 5. EC characteristics and simulation

## **II. Transition pressure rise**

- 1. Proportional to total beam intensity
- 2. Experiment background affected, beam intensity limited
- 3. Transition pressure rise related to beam momentum spread
- 4. Halo scraping?
- 5.  $\beta$ \* effect?

## III. NEG coated pipe in the RHIC

- 1. Reduced SEY and e desorption help for EC type pressure rise
- 2. More concerned about ion desorption rate
- 3. Activation condition is important
- 4. NEG pipe in RHIC
- 5. NEG coating test at Tandem



## I. Electron cloud induced pressure rise

## 1. Injection pressure rise associated with electron cloud

- Close relation between inj. pressure rise and e- signal for d-Au and proton runs.
- Quantitative explanation is needed, by better electron detection and analysis.
- Pressure rise similar to e signal, but it is in log scale.

## 2. Bunch gap effect

- Proton 110 bunch mode, with bunch intensity ~ 1e11.
- Fill 1, 16 bunch + [ 4 bunch gap ], intensity 45e11, with pressure rise 1e-6 Torr.
- Fill 2, 12 bunch + [ 8 bunch gap ], intensity 70e11, with pressure rise 4e-7 Torr.
- Could be used in operation.





## 3. Beam scrubbing

- EC induced pressure rise itself is the beam scrubbing, as long as ≤ 5e-6 Torr, beyond that pumps are ineffective.
- Keep pressure rise of 5e-6 Torr at Bo2 for 20 minutes (planned 2 hour).
- 1: intensity 80e11, 1.4e11/bh
  - 2: intensity 92e11, 1.7e11/bh
  - 3: intensity 123e11, 1.7e11/bh, shorter bunch length
- Bo2, total scrubbing 1.65 1e-6
  Torr × Hr, some effect.
- Bo10, 0.3 1e-6 Torr × Hr, smaller effect?
- G10, 0.02 1e-6 Torr × Hr, no effect?
- SPS 24 hr scrubbing, pressure rise reduced by factor of 100, dose was ~ 120 1e-6 Torr × Hr.





#### 4. Solenoid effect

- At Bo2, 5 Gauss solenoid field, 4 m long, reduced pressure rise by ~ 20% in 34 meter pipe.
- Solenoid field at Bo2 also eliminated e - signal.
- Total 24 meter solenoids at Bi12 could not completely eliminate EC and pressure rise.
- Bunch intensity effect: at Bo2, 5 Gauss solenoid field suppressed electrons for bunch intensity of 1e11. For 2e11 bunch intensity, 67 Gauss field only partially suppressed electrons.
- Beam potential, solenoid location and field, pump and gauge effect.







#### 5. EC characteristics and simulation

- Electron energy spectrum, up to 300 eV, similar to other machine, e.g. PSR.
- RGA data shows significant contribution of CO at all level pressure rise, and heavier gases at high pressure rise.
- More functional RGA to help for further study, including the gas component evolution.
- Need new feature in simulation code to explain RHIC EC, with 216 ns bunch spacing and the dependence on locations.
- Incorporated with the beam study, simulation can be very helpful in predicting EC and pressure rise, in terms of beam intensity, bunch spacing, bunch gap, bunch length, and solenoid effect.





## **II. Transition pressure rise**

- 1. Proportional to total beam intensity
  - Transition pressure rise
    quasi exponentially
    proportional to total beam
    intensity.
  - Normalized intensity unit equals charges of 1e9 Au ions.
  - Both 55 bunch (up to 118 norm unit) and 110 bunch included, not sensitive to bunch spacing.
  - A high intensity deuteron beam ramp also included.
  - Not related to beam loss.
  - Happened at IR and Q3 -Q4 straight sections.
  - Not related to ion species.
  - Highest Au intensity is 65e9.





# 2. Experiment background affected, beam intensity limited

- In d-Au run, Phobos' background was seriously affected by high pressure rise, which was caused by high total beam intensity.
- Phobos pressure rise and background data taken 30 minutes after the transition. The pressure rise was the leftover of the transition pressure rise.
- For d-Au run, total intensity above 110 normalized unit induced high background.
- At 1e9 Au ions/bh, run4 with 56 bh may see background problem at the Phobos.
- No plan of 112 bh for run4.





- 3. Transition pressure rise related to beam momentum spread
  - In proton run, pressure rise decreased as ramp started. Because of reduced beam transverse size, or reduced beam momentum spread?
  - In d-Au run, pressure rise increased as ramp started, and peaked at transition.
  - Beam transverse size reduces in both proton and d-Au ramps.
  - In d-Au ramp, beam momentum spread increased as ramp started, and peaked at the transition.





## 4. Halo scraping?

- Pin-diodes at collimation area Bi8 showed spike at the transition, for high intensity d-Au ramp, no sign of beam loss from beam loss monitor.
- The transition pressure rise of two order of magnitude implies large ion desorption rate.
- If confirmed, the transition pressure rise might be explained by halo scraping.
- It may also help to explain why RHIC EC happened at 216 ns: halo scraping created ion help electrons to survive bunch gap.
- Proposed beam scraping study: using dipole at Bi12 to steering the beam.





## 5. $\beta$ \* effect?

- In d-Au run, Phobos β\* was increased from 2 m to 4 m, intended to reduce beam loss impact and to improve Phobos' background.
- The pressure rise data did not show much difference, probably due to unchanged β\* at the transition.
- α1 and tune variation were main concerns to choose β\*= 5 m at the transition.
- Improved beam loss at the transition in d-Au run shows that there might be some room.
- Transition  $\beta$ \*= 8 m at the Phobos for study?
- Mitigate abort kicker aperture limit at transition?
- Negative impact?





## III. NEG coated pipe in RHIC

- 1. Reduced SEY and e desorption rate help for EC type pressure rise
  - Very rough NEG film helps for pumping (surface ~ bulk).
  - EC type pressure rise benefited from by- product of the rough surface: much reduced SEY and e desorption rate.
- 2. More concerned about ion desorption rate
  - Very limited experiment data, less margin.
  - Unlike EC, no other effective countermeasures in sight.
  - Might be limiting 112 bh operation.





### 3. Activation condition is important

- Standard recipe: 180° C of 24 hrs, 200° C of 5 hrs, and 250° C of 2 hrs.
- Present plan in RHIC is 250° C of 2 hrs. Higher temperature and longer period imply more difficulties.
- CERN experiment showed big difference between activations of 200° C and 300° C, of 24 hrs, in both pumping and ion desorption rate.
- There might be big difference between activations of 200° C and 300° C, of 24 hrs, in SEY.
- Thresholds exist, for SEY, pumping, electron and ion desorption.
- Better experiment data exist, not always agreeable, but we cannot afford to take chance.



## SECONDARY ELECTRON YIELD OF A GETTER LAYER





## 4. NEG pipe (and other devices for study) in RHIC

- 11 NEG pipes, 5.2 m each, will be installed in RHIC ring.
- Main purpose is to verify its effectiveness for both EC and transition type of pressure rise.
- Others: solenoids with kapton wire and uniform field, two new solenoids at IR2, 14 gauges MADC upgraded, 7 amplifiers for ED, dipole at Bi12, Pin diodes at Yo1 and Bi12.





## **5. NEG coating test at Tandem**

- Verify the quality of NEG coating for RHIC.
- Main goal: ion desorption rate of NEG coated pipe, at glancing angle beam scraping, at different activations, saturation.
- Plan to activate at 200° C, 250° C, and 300° C.
- Plan to use saturated NEG surface to overcome the complication come from the large pumping capability of NEG film.

